National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Metallic nanostructures with three-dimensional topography for plasmonics
Rovenská, Katarína ; Kvapil, Michal (referee) ; Ligmajer, Filip (advisor)
Due to high concentration of free electrons, metallic nanostructures can support plasmonic resonances. The spectral shape of plasmonic resonances may be tuned by many factors and because of it, the field of their application, given by their capability of focusing light under the diffraction limit, broadens. This thesis deals with fabrication of gold nanostructures by electron beam litography on top of a silicon substrate. The topography of the substrate is subsequentially modified by wet anistropic etching. A part of this thesis also briefly reviews methods for fabrication of nanostructures with planar or three-dimensional topography. Using the infrared spectroscopy, this thesis further analyzes the effect of size, shape, spacing of the nanostructures, and also the substrate topography on the optical response of the fabricated nanostructures. The outcomes of this thesis verify previously described tendencies of spectral relations between optical properties and named parameters in the mid-infrared region.
Metallic nanostructures with three-dimensional topography for plasmonics
Rovenská, Katarína ; Kvapil, Michal (referee) ; Ligmajer, Filip (advisor)
Due to high concentration of free electrons, metallic nanostructures can support plasmonic resonances. The spectral shape of plasmonic resonances may be tuned by many factors and because of it, the field of their application, given by their capability of focusing light under the diffraction limit, broadens. This thesis deals with fabrication of gold nanostructures by electron beam litography on top of a silicon substrate. The topography of the substrate is subsequentially modified by wet anistropic etching. A part of this thesis also briefly reviews methods for fabrication of nanostructures with planar or three-dimensional topography. Using the infrared spectroscopy, this thesis further analyzes the effect of size, shape, spacing of the nanostructures, and also the substrate topography on the optical response of the fabricated nanostructures. The outcomes of this thesis verify previously described tendencies of spectral relations between optical properties and named parameters in the mid-infrared region.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.